Matching Dominating Sets of Strong Product Graph of Euler Totient Cayley Graphs with Arithmetic $\boldsymbol{v}_{\boldsymbol{n}}$ Graphs

M.Manjuri and B. Maheswari
Abstract - Theory of domination in graphs introduced by Ore and Berge is an emerging area of research in graph theory today. It has been studied extensively and finds applications to various branches of Science \& Technology.
Products are often viewed as a convenient language with which one can describe structures, but they are increasingly being applied in more substantial ways. Every branch of mathematics employs some notion of product that enables the combination or decomposition of its elemental structures.
In this paper, we consider strong product graph of Euler totient Cayley graphs with Arithmetic V_{π} graphs and present some results on matching domination parameter of these graphs.
Index Terms - Arithmetic V_{m} graph, Matching dominating set, Euler totient Cayley graph, Strong product graph.
Subject Classification: 68R10

1 Introduction

Graph Theory has been realized as one of the most useful branches of Mathematics of recent origin with wide applications to combinatorial problems and to classical algebraic problems. Graph theory has applications in diverse areas such as social sciences, linguistics, physical sciences, communication engineering etc.

The theory of domination in graphs is an emerging area of research in graph theory today. It has been studied extensively and finds applications to various branches of Science \& Technology.

The strong product was studied by Nesetril [1]. Occasionally it is also called as strong direct product or symmetric composition. This product is commutative and associative as an operation on isomorphism classes of graphs [2].
Strong product graph of $G\left(Z_{n}, \varphi\right)$ with $G\left(V_{n}\right)$
In this paper we consider the strong product graph of Euler totient Cayley graph with Arithmetic V_{n} graph. The properties of strong product graph are studied by Uma Maheswari [3].

Let G_{1} and G_{2} be two simple graphs with their vertex sets as $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$
and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ respectively. Then the strong product of these two graphs

Department of Applied Mathematics, S.P.Womens University, Tirupati, A.P., India.
manjuri.marri@gmail.com and maherahul55@gmail.com
denoted by $G_{1} \boxtimes G_{2}$ is defined as a graph whose vertex set is $V_{1} \times V_{2}$ and any two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $G_{1} \boxtimes G_{2}$ are adjacent if
(i) $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or
(ii) $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1}=v_{2}$ or
(iii) $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$.

Let G_{1} denote Euler totient Cayley graph graph and G_{2} denote Arithmetic V_{n} graph. Then G_{1} and G_{2} have no loops and multiple edges. Hence by the definition of strong product, $G_{1} \boxtimes G_{2}$ is also a simple graph. The strong product $G_{1} \boxtimes G_{2}$ is a complete graph, if n is a prime.

2 Euler Totient Cayley Graph $\boldsymbol{G}\left(Z_{n}, \varphi\right)$

For any positive integer n_{s} let Z_{n} be the additive group of integers modulo n and let S be the set of all numbers less than n and relatively prime to n. That is $S=\{r / 1 \leq r<n$ and $G C D(r, n)=1\}$. Then $|S|=\varphi(n)$, where φ is the Euler totient function. We can see that S is a symmetric subset of the group $\left(Z_{n}, \oplus\right)$.

The Euler totient Cayley graph $G\left(Z_{m} \varphi\right)$ is defined as the graph whose vertex set V is given by $Z_{n}=\{0,1,2, \ldots, n-1\}$ and the edge set is $E=\{(x, y) / x-y \in S$ or $y-x \in S\}$. This graph is denoted by $G\left(Z_{n} \varphi\right)$.

The matching domination parameter of these graphs is studied by the authors [4] and we require the following results and we present them without proofs.
Theorem 2.1: If $n=p$, then matching domination number of $G\left(Z_{m} \varphi\right)$ is 2.
Theorem 2.2: If $n=2 p$, where p is an odd prime, then matching domination number of $G\left(Z_{n \nu} \varphi\right)$ is 4 .
Theorem2.3: Let n be neither a prime nor $2 p$ and
$n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{\lambda}^{\alpha_{2}}, \ldots p_{k}^{\alpha_{k}}$, where $p_{1}, p_{2}, p_{a}, \ldots, p_{k}$ are
primes and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are integers ≥ 1.Then the matching domination number $\operatorname{of} G\left(Z_{n}, \varphi\right)$ is given by

$$
\gamma_{m}\left(G\left(Z_{n}, \varphi\right)\right)= \begin{cases}\lambda+1 & \text { if } \lambda \text { is odd, } \\ \lambda+2 & \text { if } \lambda \text { is even. }\end{cases}
$$

where λ is the length of the longest stretch of consecutive integers in V each of which shares a prime factor with n.

3 Arithmetic V_{n} Graph

Let n be a positive integer such that $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \ldots p_{k}^{\alpha_{k}}$. Then the Arithmetic V_{n} graph is defined as the graph whose vertex set consists of the divisors of n and two vertices u and v are adjacent in V_{n} graph if and only if $\operatorname{GCD}(u, v)=p_{i}$ for some prime divisor p_{i} of n.

In this graph vertex 1 becomes an isolated vertex.
In this chapter we made an attempt to study some domination parameters of these graphs. In doing so we have deleted the vertex 1 from the graph as the contribution of this isolated vertex is nothing, when domination parameters are enumerated.
Clearly, V_{n} graph is a connected graph.
The matching domination parameter of these graphs is studied by the authors [5] and we require the following results and we present them without proofs.
Theorem 3.1: If n is a prime, then matching domination number does not exist for the graph $G\left(V_{n}\right)$.
Theorem 3.2: If $n \neq p$ and $n=p_{1}^{\alpha_{2}} p_{2}^{\alpha_{2}} p_{\pi}^{\alpha_{n}} \ldots \ldots p_{k}^{\alpha_{k}}$, where $\alpha_{\mathrm{i}} \geq 1$,then the matching domination number of $G\left(V_{n}\right)$ is given by

$$
\gamma_{m}\left(G\left(V_{n}\right)\right)=\left\{\begin{array}{cc}
k & \text { if } \mathrm{k} \text { is even, } \\
k+1 & \text { if } \mathrm{k} \text { is odd. }
\end{array}\right.
$$

wherek is the core of n.

4 Matching Domination in Strong product graph

In this section we find minimum matching dominating sets of strong product graph of $G\left(Z_{n} \varphi\right)$ with $G\left(V_{n}\right)$ graph and obtain its matching domination number in various cases.

Perfect Matching

A matching M in G is called a perfect matching if every vertex of G is incident to some edge of $M_{\text {. }}$

Matching Domination

A dominating set D of a graph G is said to be a matching dominating set if the induced subgraph $\langle D\rangle$ admits a perfect matching.

The minimum cardinality of a matching dominating set is called the matching domination number of G and is denoted by $\gamma_{m}(G)$.

Theorem 4.1: If n is a prime, then the matching domination number of $G_{1} \boxtimes G_{2}$ is 2 .
Proof: Let n be a prime. Then the graph $G_{1} \boxtimes G_{2}$ is a complete graph and hence every vertex is of degree $n-1$. So, any single vertex dominates all other vertices in $G_{1} \boxtimes G_{2}$. Let $D=\{(0, p)\}$, where 0 is a vertex in G_{1} and p is a vertex in G_{2}. Let V denote the vertex set of $G_{1} \boxtimes G_{2}$.
Then every vertex in $V-D$ is adjacent to the vertex $\{(0, p)\}$ in D.

Therefore $\gamma\left(G_{1} \boxtimes G_{2}\right)=1$.
For any $t \in\{1,2, \ldots \ldots, n-1\}$ in G_{1} the vertex $(0, p)$ is adjacent to the vertex (t, p), since the graph $G_{1} \boxtimes G_{2}$ is a complete graph.
So, if $D=\{(0, p),(t, p)\}$, then the induced subgraph $<D>$ admits a perfect matching with minimum cardinality.

Hence D is a minimal matching dominating set of $G_{1} \boxtimes G_{2}$.

$$
\text { Therefore } \gamma_{m}\left(G_{1} \boxtimes G_{2}\right)=2
$$

Theorem 4.2: Let $n \neq$ pand
$n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{2}^{\alpha_{2}} \ldots \ldots p_{k}^{\alpha_{k}}$, where $\alpha_{i} \geq 1$. Thenthe matching domination number $\operatorname{of} G_{1} \boxtimes G_{2}$ is given by

$$
\begin{aligned}
& \gamma_{m}\left(\begin{array}{l}
\left.G_{1} \boxtimes G_{2}\right) \\
=\left\{\begin{array}{lc}
(\lambda+1) \cdot(k-1) & \text { if } \alpha_{i}=1 \text { for more than one } \mathrm{i} \\
(\lambda+1) \cdot k & \text { otherwise } .
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

if λ is odd and

$$
\begin{aligned}
& \gamma_{m}\left(G_{1} \boxtimes G_{2}\right) \\
= & \begin{cases}(\lambda+2) \cdot(k-1) & \text { if } \alpha_{i}=1 \text { for more than one } \mathrm{i}, \\
(\lambda+2) \cdot k & \text { otherwise } .\end{cases}
\end{aligned}
$$

if λ is even, where kis the core of nand λ is the length of the longest stretch of consecutive integers in V_{1} of G_{1} each of which shares a prime factor with n.
Proof: Suppose n is not a prime and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \ldots p_{k}^{\alpha_{k}}$; where $\alpha_{i} \geq 1$.
Consider the graph $G_{1} \boxtimes G_{2}$ Let V_{1}, V_{2}, V denote the vertex sets of G_{1}, G_{2} and $G_{1} \times G_{2}$ respectively.
By Theorem 2.3, we know that $D_{1}=\left\{u_{\mathbb{C}_{n}}, u_{d_{n}, \ldots,}, u_{d_{n+\infty}}\right\}$ is a dominating set of G_{1} with cardinality $\lambda+1$, where $\neq 2 p$. But it can be easily seen that this set also becomes a dominating set even in the case $n=2 p$.
The following cases arise.
Case 1: Suppose $\alpha_{i}>1$ for all i or $\alpha_{i}=1$ for only one $i_{\text {. }}$
We know that $D_{1}=\left\{u_{d_{d_{n}}}, u_{d_{n}, \ldots,}, u_{d_{7} \ldots}\right\}$ is a dominating set of G_{1}. As in the Remark of Theorem 3.6.4 of Chapter 3 [6], we know that $D_{2}=\left\{p_{1}, p_{2}, \ldots \ldots, p_{k}\right\}$ is a dominating set of G_{2} with cardi-
nality k.
Let $D=D_{1} \times D_{2}=\left\{u_{d_{n}}, u_{d_{n}, \ldots}, u_{d v_{n}}\right\} \times\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ We now show that D is a dominating set of $G_{1} \boxtimes G_{2}$
Let (u, v) be any vertex in $V-D$. Then u is adjacent to $u_{d_{1}}$ for some l_{s} where $1 \leq l \leq \lambda+1_{s}$ because D_{1} is a dominating set of G_{1} Vertex v in G_{2} is adjacent to any vertex $p_{1}, p_{2}, \ldots \ldots p_{k}$ say p_{m} as D_{2} is a dominating set of G_{2}. Hence by the definition of strong product, every vertex (u, v) of $V-D$ is adjacent to atleast one vertex $\left(u_{d,}, p_{m}\right)$ in D.

Thus D becomes a dominating set of $G_{1} \boxtimes G_{2}$.
Suppose we delete a vertex $\left(u_{d,}, p_{v}\right)$ from D. Let vertex $u_{d_{\mathrm{s}}}$ be adjacent to the vertices $u_{1}, u_{2}, u_{\text {g, }}, u_{\text {orm }}$ as degree of each vertex in G_{1} is $\varphi(n)$. Here all the vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{\omega m \mid}$ are not adjacent to the vertices of $D_{1}-\left\{u_{d_{3}}\right\}$. If this is happened, then $D_{1}-\left\{u_{d_{*}}\right\}$ becomes a dominating set of G_{1} a contradiction to the minimality of D_{1}.

Therefore there is at least one vertex in $\left\{u_{1}, u_{2}, \ldots, u_{a m}\right\}$, say $u_{r s}$, which is not adjacent to any vertex of $D_{1}-\left\{u_{d *}\right\}$.

Since $p_{1}, p_{2, \ldots \ldots s} p_{k}$ are distinct primes, there is no adjacency between these vertices. Then by the definition of strong product, vertex $\left(u_{F}, p_{v}\right)$ is not adjacent to any vertex of $D-\left\{\left(u_{d_{v}}, p_{v}\right)\right\}$ Hence $D-\left\{\left(u_{d_{v}}, p_{v}\right)\right\}$ is not a dominating set of $G_{1} \boxtimes G_{2}$.

Thus D becomes a dominating set of $G_{1} \boxtimes G_{2}$ with minimum cardinality $(\lambda+1)$. k.

Now we show that D is a matching dominating set of $G_{1} \boxtimes G_{2}$.Two cases arise.

Case (i): Supposeतis odd. The vertices $u_{d,}, u_{d \ldots}$ are adjacent since they are consecutive vertices in G_{1}. Hence by the definition of strong product, the vertices $\left(u_{d_{2}} p_{i}\right),\left(u_{d_{e n}}, p_{i}\right)$ are adjacent fori $=1,3, \ldots \ldots$. in $G_{1} \boxtimes G_{2}$. Further theedges in $F=\left\{\left(u_{d_{r}, p_{1}}\right),\left(u_{d_{t}, \ldots} p_{1}\right) ; \ldots \ldots{ }^{*}\left(u_{d_{r}}, p_{k}\right),\left(u_{d_{1}, \ldots}, p_{k}\right)\right\} \quad$ for $i=1,3, \ldots, \lambda$
are pairwise non - adjacent, since there is no edge between the primes $p_{1}, p_{2}, \ldots, p_{k}$ Hence F forms a matching in $G_{1} \boxtimes G_{2}$.

Now every vertex in $G_{1} \boxtimes G_{2}$ is incident with some edge in F_{s} as D is a dominating set.Since λ is odd there are an even number of edges in the above set. Thus $<F>$ admits a perfect matching and hence $<D>$ becomes a matching dominating set of G_{1} ® G_{2} with cardinality $(\lambda+1)$. k.

$$
\text { Hence } \gamma_{m}\left(G_{1} \boxtimes G_{2}\right)=(\lambda+1) k
$$

Case (ii): Suppose λ is even. Then $\|F\|$ is an odd number. So we cannot get a perfect matching in this case. Hence to get a matching dominating set in $G_{1} \boxtimes G_{2}$, we include a vertex $u_{d \eta_{-2}}$ to the dominating set D_{1} of G_{1} such that $u_{d \lambda_{11}}$ and $u_{d \lambda_{2}}$ are adjacent in G_{1}
Let $D_{1}=D_{1} \cup\left\{u_{d J_{\perp}}\right\}=\left\{u_{d 1}, \ldots, u_{d l_{+}}\right\}$. Obviously D_{1} is a dominating set of G_{1} as D_{1} is a dominating set of G_{1}.

$$
\text { Let } D^{x}=D_{1}^{x} \times D_{2}=\left\{u_{d 1_{1}, \ldots \ldots}, u_{\left.d \lambda_{\perp}\right)}\right\} \times\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} .
$$

Obviously D^{a} is a dominating set of $G_{1} \boxtimes G_{2}$ as D is a dominating set of $G_{1} \boxtimes G_{2}$ By using Case (i), we see that the edges in $F=\left\{\left(u_{d_{r}, p} p_{1}\right),\left(u_{d_{\ldots}, \ldots}, p_{1}\right) ; \ldots \ldots ;\left(u_{d_{r}} p_{k}\right),\left(u_{\mathbb{d}_{\ldots},}, p_{k}\right)\right\} \quad$ for $i=1,3, \ldots, \lambda+1$ are pair wise non - adjacent. Hence this set of edges form a matching in $G_{1} \boxtimes G_{2}$. Now every vertex in $G_{1} \boxtimes G_{2}$ is incident with some edge in F_{x} as D^{\prime} is a dominating set.

Since λ is even there are an even number of edges in the above set F : Thus $<F>$ admits a perfect matching and hence $\left\langle D^{x}\right\rangle$ becomes a matching dominating set of $G_{1} \boxtimes G_{2}$ with cardinality $(\lambda+2) . k$.

Now we claim that D° is minimum. Suppose we delete a vertex $\left(u_{d,}, p_{k}\right)$ from D°. Then $\left|D^{\prime \prime}\right|$ is an odd number which contradicts that D is a matching dominating set.

Therefore $D^{\text {" }}$ is a minimum matching dominating set of $G_{1} \boxtimes G_{2}$

$$
\text { Hence } \gamma_{m}\left(G_{1} \boxtimes G_{2}\right)=(\lambda+2) \cdot k
$$

Case 2: Suppose $\alpha_{\mathrm{i}}=1$ for more than one i_{i}
We know that $D=\left\{u_{\mathbb{C}_{,}, \ldots,}, u_{d_{n}}\right\}$ is a dominating set of G_{1} and By Case 1 in Theorem 3.6.2 and Case 1 in Theorem 3.6.5 of Chapter 3 [6], we know that
$D_{2}=\left\{p_{1}, p_{2}, \ldots \ldots, p_{i-2}, p_{i-1}, p_{i} p_{i+1} \ldots \ldots, p_{k}\right\}$ is a dominating set of G_{2} with cardinality k.
Let
$D=D_{1} \times D_{2}=$
$\left\{u_{d_{1}}, u_{d_{2}, \ldots,}, u_{d_{2+1}}\right\} \times\left\{p_{1}, p_{2, \ldots}, p_{i-2}, p_{i-1}, p_{i}, p_{i+1, \ldots} p_{k}\right\}$.
Now we show that D is a minimum dominating set of G_{1} 区 G_{2}
Let (u, v) be any vertex in $V-D$. Then u is adjacent to $u_{d_{1}}$ for some l_{s} where $1 \leq l \leq \lambda+1$.

The vertex ν in G_{2} is adjacent tosome vertex in D_{2}, say p_{m}. Hence by the definition of strong product, every vertex (u, v) of $V-D$ is adjacent to atleast one vertex $\left(u_{d}, p_{m}\right)$ in D.
Thus D becomes a dominating set of $G_{1} \boxtimes G_{2}$
Now we show that D is minimal. Suppose we delete a vertex, $\quad \operatorname{say}\left(u_{d}, p_{i}\right), j=1,2, \ldots, i-2, i+1, \ldots$, kfrom D. Let vertex $u_{d_{1}}$ be adjacent to the vertices $u_{1}, u_{2}, u_{2, \ldots, s} u_{\text {am }}$ as degree of each vertex in G_{1} is $\varphi(n)$. Here all the vertices $u_{1}, u_{2}, u_{\mathrm{a}, \ldots,}, u_{\operatorname{arm}}$ are not adjacent to the vertices of $D_{1}-\left\{u_{d .}\right\}$ If this is happened, then $D_{1}-\left\{u_{\mathcal{U}_{1}}\right\}$ becomes a dominating set of G_{1}, a contradiction to the minimality of D_{1},

Therefore there is at least one vertex $\operatorname{in}\left\{u_{1}, u_{2}, \ldots, u_{a m}\right\}$, say $u_{r s}$ which is not adjacent to any vertex of $D_{1}-\left\{u_{d}\right\}$.

Since $p_{1}, p_{2}, \ldots, p_{i-2} p_{i+1}, \ldots, p_{k}$ are distinct primes, there is no adjacency between these vertices. Then by the definition of strong product, vertex $\left(u_{F}, p_{i}\right)$ is not adjacent to any vertex of $D-\left\{\left(u_{d_{\theta}}, p_{i}\right)\right\}$. Hence $D-\left\{\left(u_{d_{v}}, p_{i}\right)\right\}$ is not a dominating set of $G_{1} \boxtimes G_{2}$. Similar is the case with the deletion of any other vertex in D.

Thus D becomes a minimal dominating set $G_{1} \boxtimes G_{2}$ with cardinality $(\lambda+1)$. $(k-1)$.
Now we show that D is a matching dominating set of $G_{1} \boxtimes G_{2}$,Two cases arise.

Case (i): Suppose $\lambda i s$ odd. The vertices $u_{d,}, u_{d, \ldots}$ are adjacent since they are consecutive vertices in G_{1}. Hence by the definition of strong product, the vertices $\left(u_{d,}, p_{i}\right),\left(u_{d_{t}, n} p_{i}\right)$ are adjacent fori $=1,3, \ldots$. din G_{1} 区 G_{2}.

Consider the set F of edges
$\left\{\left(u_{d,}, p_{i}\right),\left(u_{d_{t-\infty}}, p_{i}\right) ; \ldots ;\left(u_{d t}, p_{i-1} \cdot p_{i}\right),\left(u_{d_{t+a}}, p_{i-1}, p_{i}\right)\right.$ for $i=1,3, \ldots . \lambda$ and $j=1,2, \ldots, i-2, i+1_{s, \ldots}, k$. No two edges in Fare adjacent,since there is no edge between the primes $p_{1}, p_{2}, \ldots, p_{i-2}, p_{i+1}, \ldots, s p_{k}$ and $G C D\left(p_{i}, p_{i-1} \cdot p_{i}\right)=1$. Hence F forms a matching in $G_{1} \boxtimes G_{2}$.

Now every vertex in $G_{1} \boxtimes G_{2}$ is incident with some edge in F, as D is a dominating set. Since λ is odd, there are
an even number of edgesin F. Thus $<F>$ admits a perfect matching and hence $<D>$ becomes a matching dominating
set of $G_{1} \boxtimes G_{2}$ with cardinality $(\lambda+1) \cdot(k-1)$.

$$
\text { Hence } \gamma_{m}\left(G_{1} \boxtimes G_{2}\right)=(\lambda+1) \cdot(k-1) \text {. }
$$

Case (ii): Suppose λ iseven. In similar lines to Case (ii) of Case1, we includea vertex $u_{d I_{2}}$ which is adjacent to $u_{d I_{2}+1}$ to the dominating set $D_{1} \operatorname{of} G_{1}$
 dominating set of G_{1} as D_{1} is a dominating set of G_{1}.
Let
$\mathrm{D}^{*}=\mathrm{D}_{1} \times \mathrm{D}_{2}=\left\{\mathrm{u}_{\mathrm{d}_{1}}, \ldots, \mathrm{u}_{\mathrm{d}_{\lambda+2}}\right\} \times\left\{p_{1}, p_{2}, \ldots, p_{i-2}, p_{i-1}\right.$. $\left.p_{i} p p_{i+1} \ldots, p_{k}\right\}$
. Obviously D is a dominating set of $G_{1} \boxtimes G_{2}$ as D is a dominating set of $G_{1} \boxtimes G_{2}$.

Let F be the set of edges.
$\left\{\left(u_{d^{2}}, p_{i}\right),\left(u_{d_{r-n}}, p_{i}\right) ; \ldots ;\left(u_{d r}, p_{i-1}, p_{i}\right),\left(u_{d_{t+n}}, p_{i-1}, p_{i}\right)\right.$ for
$i=1,3, \ldots . \lambda+1$ and $j=1,2, \ldots, i-2, i+1_{, \ldots, k}$. By using above Case (i), we see that the edges in Fare non - adjacent. Hence this set of edges form a matching in $G_{1} \boxtimes G_{2}$. Now every vertex in $G_{1} \boxtimes G_{2}$ is incident with some edge in F_{x} as D^{\prime} is a dominating set.

Since λ is even there are an even number of edges in the above set F : Thus $<F>$ admits a perfect matching and hence $<D^{v}>$ becomes a matching dominating set of $G_{1} \boxtimes G_{2}$ with cardinality $(\lambda+2) \cdot(k-1)$.

Now we claim that $D^{\text {" }}$ is minimum. Suppose we delete a vertex $\left(u_{d}, p_{k}\right)$ from D. Then $\left|D^{\prime \prime}\right|$ is an odd number which contradicts that D is a matching dominating set.

Thus D^{\prime} is minimal matching dominating set of $G_{1} \boxtimes G_{2}$ with cardinality $(\lambda+2) \cdot(k-1)$.

$$
\text { Hence } \gamma_{m}\left(G_{1} \boxtimes G_{2}\right)=(\lambda+2) \cdot(k-1)
$$

5 GRAPHS

$G_{1}=G\left(Z_{11}, \varphi\right)$

$$
G_{2}=G\left(V_{11}\right)
$$

$G_{1} \boxtimes G_{2}$
Matching dominating set $\{(0,11),(1,11)\}$ $n=2^{3}=8$

$G_{1}=G\left(Z_{8}, \varphi\right)$
$G_{2}=G\left(V_{8}\right)$

$G_{1} \boxtimes G_{2}$
Matching dominating set $\{((0,2),(1,2))\}$
$n=3 \times 5=15$

